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Abstract 

This paper deals with a statistical problem arising from the pairwise reaction of 
immediately adjacent substituents along the backbone of a linear polymer chain. The pos- 
sibility arises that a given substituent becomes unavailable for reaction as a result of the 
reaction of its nearest neighbors on either side. Previous treatments of this problem have 
not explicitly taken the consequences of the reaction mechanism into account. In this paper, 
it is shown that the expected number of unreacted substituents remaining after exhaustive 
pairwise reaction is a function of the reaction mechanism. For example, in the case of the 
chain model adopted here, which corresponds to a perfectly regular head-to-tail vinyl halide 
( -CI~-CHX-) ,  we show that the fraction of halide atoms remaining after exhaustive 
removal is equal to 0.1233. The result is compared with results obtained from previous 
work. 

1. Introduction 

One of the distinguishing features of macromolecular chemistry is that 
mechanisms of polymerization are imprinted on the backbones of polymer chains. For 
example, the monomeric repeat units of vinyl polymers (-CHz---CHX-) may add to the 
end of a growing chain head-to-tail (-CHz--CHX-CHE-CHX-) or head-to-head 
(-CHz--CHX-CHX-CH2-).  In the former case, the X substituents are separated by a 
single CH 2 group and are said to be in a 1-3 placement. In the latter case, the placement 
is obviously 1-2. Similarly, a 1-4 placement results when a head-head is immediately 
followed by a tail-tail addition. Now certain reactions are known to effect pairwise 
reaction of adjacent substituents provided they are separated by a less-than-critical 
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distance. In the case of polyvinyl methyl ketone (X = -CO-CI-I3), it has been shown 
[1] that 1-2 and 1-3 placements are readily distinguishable. In this case, the substitu- 
ents are not removed but are paired in a cyclization reaction. Studies on dehydration of 
polyvinyl alcohol (X = - O H )  [2] lead to similar results. The reader is referred to the 

original papers for more detailed accounts of these results. 

The general problem, exemplified by the aforementioned studies, may be stated 
as follows: Suppose that a chemical agent is capable of irreversibly removing or 
otherwise coupling pairs of adjacent substituents provided only that they are within 
some specified critical distarice. In either case, we may consider that a substituent is 
effectively removed when it is no longer available for the reaction. If the removal 
process proceeds in a random fashion, a given substituent may become isolated as a 
result of  the removal of substituents on either side (i.e. its nearest neighbors are then 
outside the critical distance. Given these circumstances, what is the expected number of 
isolated substituents remaining, after exhaustive pairwise removal in a chain of N 
substituents? 

In this paper, we restrict ourselves to the simplest case in which the initial 
placement of substituents is uniform along the backbone of a polymer chain. Theoretical 
treatments of this problem have been given by Flory [3] and Wall [4,5], both authors 
having extended the treatment to more general situations in which various spacings are 
initially present. A purely mathematical treatment of the model in this paper has been 
presented by Ross [6] (who, no doubt, was unaware of the work of Flory and Wall, 
which appeared in the chemical literature more than forty years earlier). The treatments 
by all three of these authors lead to the same result (hereafter referred to as the FWR 

result), namely that, in the limit of very long chains, the fraction of isolated substituents 

is exp( -2 ) ,  i.e. 0.1353. 

The FWR result rests on the assumption that all pairs of available adjacent 
substituents are equally likely to be selected for removal. The results we obtain, while 
based upon an identical model of the initial polymer structure, differ from FWR 
in that the two-step mechanism of the removal process is explicitly taken into account. 
Accordingly, a reaction site is first randomly selected from among available sites. The 
first step then consists of  establishing an initial attachment between the selected site and 
the removal agent. A second step then consists of  selecting either an available site to 
the right or an available site to the left, provided only that they lie within the critical 
distance. Although the authors of the FWR treatment never suggested an element of 
directionality in their model, their result does in fact correspond to the situation in which 
our second step would consistently entail selection of a site either to the left or to the 
right. In consequence, it will be shown that the probability of the selection of terminal 
substituent pairs differs from that of  non-terminal pairs. It will also be shown that this 
effect is not merely an "end effect" which becomes negligible in the limit of  long chain 
length, but in fact leads to results which differ quantitatively from those of FWR. 
Moreover, our results are in precise agreement with the results of  Monte Carlo computer 
simulations of the pair removal process we have described. 
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2. Illustrative calculation 

The initial state of the system is represented by a row of N equally spaced points, 
only adjacent points being within the critical distance for pairwise removal. Using this 
simplified model, we calculate the expected number of isolated points after exhaustive 
pairwise coupling. 

Consider, for example, an array of four points representing four uniformly spaced 
chemical groups subject to pairwise removal. If the initial state of  the system is 
represented by the diagram [ * * * * 1, then the (only) possible final states are repre- 
sented as follows: 

State 1: [ -  - ]  ; two pairs removed, no points isolated. 

State 2: [* - * ]; one pair removed, two points isolated. 

that 
We define S o as the expected number of isolated sites in a chain of length N so 

N 

Su = ~ p(i) s(i), (1) 
i=1 

where p(i) is the probability that the removal process will result in final state (i), and 
s(i) is the number of isolated points associated with that state. 

To illustrate our method, we now proceed to calculate the probabilities of each 
of the two possible final states. For convenience, we indicate the location of each site 
in the chain from left to right (i.e. 1, 2, 3, 4). 

State 1 can be realized in only two ways: either pair 1-2 is formed, followed by 
the formation of pair 3--4, or the reverse order (3-4  followed by 1-2). By symmetry, 
the probabilities of either order are the same, so we will calculate only the former. We 
note that, if the pair 1-2 is formed first, the conditional probability of forming the pair 
3 -4  is unity. The probability of initially forming pair 1-2 is the sum of the probabilities 
of selecting site 1 in the first step (of the reaction mechanism)and then selecting 
site 2 in the second step, or the reverse (site 2 in step one, followed by site 1 in step two). 
If site 1 is selected, the conditional probability of forming pair 1 -2  is clearly unity. 
However, if site 2 is selected, the probability of forming pair 1-2  is 1/2. Hence, the total 
probability of initially forming pair 1-2 is (1/4) (1 + 1/2) = 3/8. It then follows from 
the symmetry condition that 

p(1) = (3/8) + (3/8) = 3/4. 

As for state 2, it is apparent that the probability of its realization is simply the 
probability that the initial pair is 2-3.  That is, 

p(2) = (1/4) (1/2 + 1/2) = 1/4. 
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It then follows from eq. (1) that 

S 4 = (3/4) (0) + (1/4) (2) = 1/2. (OURS) 

To compare our results with those of FWR, we note that, in the latter case, it is 
assumed that all possible pairs are equally probable. In a chain of length N, the initial 
pair selection occurs with equal probability among the (N - 1) possible pairs, denoted 
as (1, 2) through (N - 1, N), which is to say that the probability that any particular pair 
is selected is 1/(N-  1). Speeifically, terminal pairs (those located at the ends of the 
chain) have the same probability of forming as those located internally. In contrast, the 
method described in this paper ascribes a probability of (l/N) (3/2) to the formation of 
each of the terminal pairs, and a probability of (l/N) to each of the ( N -  3) intemal pairs. 

To see the effect of the distinction of these two approaches, consider the calcu- 
lation of S 4 by the FWR method. Using the probabilities obtained as a result of the FWR 
assumptions, it is found that p(1) = 2/3 and p(2) = 1/3. Hence, referring to eq. (1), 

S 4 = (2/3) (0) + (1/3) (2) = 2/3. (FWR) 

3. Recursion relationships 

Consider a series of N equally spaced points, numbered 1 through N. There are 
therefore N - 1 pairs of adjacent points, denoted as (i, i + 1), where i can be any value 
from 1 to (N - 1). Let p(i, N) be the probability that the pair (i, i + 1) is the first pair 
selected for removal in a chain of N points. It follows from the assumption in our model 
that 

3 / (2N) f o r i =  1, N - l ;  

p(i ,N) = [ ( 1 / N )  f o r / =  2 . . . . .  N -  2. (2) 

We observe that the selection of the initial pair (i, i + 1) splits the chain into two 
subchains of lengths (i - 1) and (N - i - 1). The total number of isolated points in the 
chain will be the sum of the isolated points in each of the two subchains. Recall that S N 
is the expected number of isolated points for a chain of length N. Let S/, N be the expected 
number of isolated points for a chain of length N, given only that the pair (i, i + 1) has 
been selected. Then, 

s N- - s_ ,  + sN_,_,. (3) 

Since any of the (N - 1) possible pairs could have been initially selected, 

N - 1  

SN = ~ p(i,N)(SI,N). 
i=1  

(4) 
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Combining eqs. (3) and (4), 

N - 1  N - 1  

SN = ~., p ( i , N ) S i _ l  + ~,  p ( i , N ) S l v - i - 1  . (5) 
i=1 i=1 

By symmetry, p(i,  N) = p (N - i, N). Introducing the index j = N - i, eq. (5) may 
be rewritten as 

N - 1  1 

SN = ~,  p ( i , N ) S i - i  + ~,  p ( j , N ) S j _ I  . (6) 
i=1 j=N-1 

The two sums on the right-hand side of eq. (6) are obviously equal. So, 

N - I  

SN = (2) ~ p ( i , N ) S i _ l  . (7) 
i=1 

Substitution of eq. (2) into (7) yields 

S N = (2/U) [(3/2)S o + {S 1 + S 2 + . . .  + SN_3} + (3/2)S1v_z ]. (8) 

Since S o equals zero, eq. (8) can be rewritten as 

(N)SN = (2)[$1 + $2 + ' "  + SN- 21 + SN- 2" (9) 

Subtracting (N - 1)SN_ ~ from the above and rearranging, we obtain 

S N = ( I / N ) [ ( N -  1)SN_ ~ + (3)SN_ 2 - SN_3]. (10) 

Equation (10) is a general recursive relationship for S o. Since it is obvious that S~ = 1, 
S 2 = 0, and S 3 = 1, we can insert these values into eq. (10) and obtain S 4 = 0.5, which 
we have previously shown to be the case. 

We observe that the difference between the FWR method and ours resides 
entirely in the difference in the two expressions for p(i, N). The FWR equation which 
corresponds to our eq. (2) is 

p(i, N) --- 1 / ( N -  1) for i = l, 2 . . . . .  N -  1. (FWR) (2A) 

Replacing our expression for p(i, N) with the FWR expression (eq. (2A)) and, there- 
after, following the same line of reasoning, we obtain the following recursion relation- 
ship for S N: 

S N = [1/(N - 1)] [(N - 2)SN_ ~ + (2)SN_ 2]" (FWR) (a0A) 
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For obvious reasons, the model which we share with FWR requires agreement as far as 
the values of S~, S 2, and S 3 are concerned. As we have previously shown, the FWR result 
for S 4 is 2/3, which also follows from eq. (10A). 

To further compare the results of our calculation, we have tabulated the results 
of  our recursion (eq. (10)) and those obtained by the FWR method (eq. (10A)) for 
several values of chain length N. These results (shown in table 1) were verified by a 
statistically large number of Monte Carlo simulations corresponding to, respectively, 
the two mechanisms presented in eqs. (10) and (10A). 

Table 1 

Comparison of results 

Present (eq. (10)) FWR (eq, (10A)) 
N s N SN/N S N SN/N 

1 1.000 1.0000 1.000 1,0000 

2 0.000 0.0000 0.000 0.0000 

3 1.000 0.3333 1.000 0.3333 

4 0.500 0.1250 0.667 0.1667 

5 1.000 0,2000 1.000 0.2000 
6 0.917 0.1528 1.067 0.1778 

7 1.143 9.1633 1.222 0.1746 

8 1.219 0.1523 1.352 0.1690 

9 1.362 0.1514 1,489 0.1654 

10 1.478 0.1478 1.624 0.1624 

20 2.713 0.1357 2.977 0.1489 

It is apparent from table 1 that our results differ from those of FWR and, as we 
shall show in the next section, these differences persist even for large N. We have 
previously noted that the FWR results correspond to the assumption that the removal 
mechanism is a two-step process in which a randomly selected point is paired with the 
one immediately to its right, if the latter point has not been previously selected. In 
contrast, our calculation allows for equally probable pairing either to the right or to the 
left. In our view, this corresponds more closely to an actual chemical reaction 
mechanism. 

4. General  formulation of the problem 

We now consider the implications of the recursion relationships, eqs. (10) and 
(10A). The quantity of greatest physical interest is, in general, the fraction of isolated 
substituents following exhaustive pairwise removal, SN/N. As shown in the appendix, 
the FWR formulation leads directly to an analytical solution for the limiting 
value of SN/N, as N increases without bound, i.e. the limit for FWR is e x p ( - 2 ) ,  which 
is equal to 0.1353. 
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Unfortunately, the mechanistic formulation of the problem, which we have 
presented, does not lend itseff to a closed form solution. As shown in table 2, our 
calculations demonstrate that in the limit of  large N, the fraction of isolated substituents 
is 0.1233, corresponding to a somewhat higher efficiency of substituent removal. 

Table 2 

Asymptotic values of SN/N 

Present (eq. (10)) FWR (eq. (10A)) 
N s N sNm s,, 

10 1.478 0.1478 1.624 0.1624 
100 12.579 0.1258 13.804 0.1380 

1,000 123.565 0.1236 135.606 0.1356 
10,000 1233.433 0.1233 1353.627 0.1354 

100,000 12332.240 0.1233 13533.971 0.1353 

While the two results are not vastly different numerically, it is of  interest to note 
that the difference is significant from a theoretical point of view. 

5. Conclusions 

In this paper, we have demonstrated that the limiting number of isolated sub- 
stituents in a chain of length N, subject to pairwise removal by a two-step mechanism, 
differs from that previously reported. The difference between these two results arises 
from the explicit recognition that the probability of removal of terminal pairs in a 
sequence of contiguous constituents differs from that of a non-terminal pair (eq. (2)). 
However, this should not be viewed as a typical end effect that becomes negligible in 
the limit of  large N. For example, in a chain of 108 units, the random removal of four 
pairs from the chain could result in as many as five subchains. In the original chain, the 
proportion of terminal units is 2/108 (approximately 0.02), whereas in the subdivided 
chain, the proportion of terminal units could be as large as five times that in the original 
chain. The point to be emphasized here is that, regardless of the length of the original 
chain, new terminal units are generated as a result of the division of the chain into an 
increasing number of smaller subchains. Thus, the terminal-pair effects exert increasing 
impact as the selection process proceeds. 

Appendix 

In tables 1 and 2, the results of numerical computation of S N and S v/N are shown 
for our method of  computation and for that of FWR. We reiterate that the same physical 
model is employed in both cases. As seen in table 1, the values of S 0, S 1, S 2, S 3, and S 5 
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are identical in both cases but all other terms are different. The recursive relationships 
governing S u are given by eq. (10) (our method) and eq. (10A) (FWR's method). They 
are rewritten below after minor rearrangement. 

(N)  (SN) = (N - 1) (SN_ 1) + (3) (S N_ z) - SN- 3' 

(N  - 1) (SN) = (N - 2)  (S N _ 1) + (2) (SN_ 2 ). 

(10') 

(IOA') 

Adopting Flory's approach [3], we define first and second differences of the series 
S 0, S 1 , S 2 . . . .  as Sj and ~j, respectively, where 

and 
6 .=S . -S j_ I ;~  J j = 1 , 2 , 3  . . . .  (A1) 

#j = fij - fij-1 ; J = 2, 3, 4 . . . . .  (A2) 

Summing successive terms in (A1) and (A2), we obtain 

N 

~', 6k = S u  -- S l ,  (A3) 
k=2 

k 

~', #j  = Sk - $I;  k > 1. (A4)  
j = 2  

Since, in all cases, S O = 0 and S 1 

N k 

sN=I+ Z (1+ Z s) 
k =2 j = 2  

= 1  

= 1, then S 1 = 1. It follows that 

+ 1 +/.t2 

+ 1 + # 2  +/Z3 

+ . . .  

+ 1 + J / 2  + ~ 3  + . , .  + # N  

N N 
= (N) (1 + ~ / . t j  ) - ~ ( j -  1)(#j ). (A5) 

j = 2  j = 2  

The problem is thus reduced to finding suitable expressions for #j. These are 
obtained for the two cases under consideration by taking second differences of succes- 
sive terms in eqs. (10) and (IOA). The resulting recursion relationships are, for the 
present case, 
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#j = ( -2 / j )  (#j_ 1) + (l/j)  (#j_ 2) (OURS) (A6) 

and, for FWR's method 

#j = [ -2 / ( j  - 1)](#j_ 1)" (FWR) (A7) 

Considering the FWR result first and recalling that #2 = ($2 - S~) - (S~ - S o) = -2,  we 
obtain the results 

#j = [(_2)O- 0 ] / [ ( j  _ 1)!]. (FWR) (A8) 

Substitution of (A7) and (A8) into (A5) then leads to 

o r  

N - 1  

SN = (N + 2) ~ [( -2)J l / ( j ! )+ { ( -2 )N / [ (N-  1)!]} 
j=o 

(FWR) (A9) 

N - 1  

SN/N = (1 + 2 / N )  ~ [(-2)Jl / ( j ! )+ [(-2)N/(N!)], (FWR) (A9') 
j=0 

from which we obtain FWR's result 

o o  

lim (SN/N)FwR = ~ [(-2) j ] / (J!)  = exp(-2) = 0.1353. 
N - +  oo j = 0  

(AIO) 

Retuming to eq. (10'), we note that the recursion expression of S N does not lead 
to a closed form expression for #.. We have accordingly resorted to direct numerical 
computation of S N, the resulting rJatio (SN/N) being 

lim (SN /N)present case = O. 1233. 
N---> oo 
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